- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Braun, Willard J (1)
-
Goetz, Geoffrey (1)
-
Tazik, Ladan (1)
-
Thompson, John_R J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stochastic Behaviour of Directional Fire Spread: A Segmentation-Based Analysis of Experimental BurnsUnderstanding the dynamics of fire propagation is essential in improving predictive models and developing effective fire management strategies. This study applies computer vision techniques to complement traditional fire behaviour modelling. We employ the Segment Anything Model to achieve the accurate segmentation of experimental fire videos, enabling the frame-by-frame segmentation of fire perimeters, quantification of the rate of spread in multiple directions, and explicit analysis of slope effects. Our laboratory experiments reveal that the ROS increases exponentially with slope, but with coefficients differing from those prescribed in the Canadian Fire Behaviour Prediction System, reflecting differences in field conditions. Complementary field data from prescribed burns in coniferous fuels (C-7) further demonstrate that slope effects vary under operational conditions, suggesting field-dependent dynamics not fully captured by existing deterministic models. Our experiments show that, even under controlled laboratory conditions, substantial variability in spread rate is observed, underscoring the inherent stochasticity of fire spread. Together, these findings highlight the value of vision-based perimeter extraction in generating precise spread data and reinforce the need for probabilistic modelling approaches that explicitly account for uncertainty and emergent dynamics in fire behaviour.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
